Seamless Positioning and Navigation by Using Geo-Referenced Images and Multi-Sensor Data
نویسندگان
چکیده
Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments.
منابع مشابه
The Performance Analysis of Space Resection-Aided Pedestrian Dead Reckoning for Smartphone Navigation in a Mapped Indoor Environment
Smartphones have become indispensable in our daily lives. Their various embedded sensors have inspired innovations in mobile applications—especially for indoor navigation. However, the accuracy, reliability and generalizability of navigation all continue to struggle in environments lacking a Global Navigation Satellite System (GNSS). Pedestrian Dead Reckoning (PDR) is a popular method for indoo...
متن کاملAn Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database
In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision n...
متن کاملA Portable Multi-sensor System for Geo-referenced Image Sequences
The demand of high-resolution spatial information such as geo-referenced images and realistic 3D models is rapidly increasing. Most existing systems to acquire such information involve expensive platforms such as manned or unmanned, air or ground vehicles to obtain high-resolution images and GPS/IMU data. Thanks to the availability of small image acquisition devices and light-weighted MEMS GPS/...
متن کاملSpatial dynamics for relative contribution of cropping pattern analysis on environment by integrating remote sensing and GIS
Agriculture resources reflected to be one of the most imperative renewable and dynamic natural resources. Agricultural sustainability has the premier priority in all countries, whether developed or developing. Cropping system analysis is indispensable for grinding the sustainability of agricultural science. Crop alternation is stated as growing one crop after another on the same piece of la...
متن کاملGPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor
Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013